Aqueous solutions of hypovalent gallium; reductions using gallium(I)†

Shawn Swavey* and Edwin S. Gould*

Department of Chemistry, Kent State University, Kent, Ohio 44242, USA

Received (in Cambridge, UK) 19th June 2000, Accepted 25th September 2000 First published as an Advance Article on the web

Solutions 0.2 mol dm⁻³ in Ga^I, prepared by dissolving **Ga2Cl4 in dry acetonitrile, are stable for more than seven** days and may be diluted 300- to 1000-fold with O₂-free water **to give GaI preparations that may be handled by conven**tional techniques; these Ga^I(aq) solutions readily reduce I₃⁻, $Br_2(aq)$, $IrCl₆²⁻$, $Fe(bipy)₃³⁺$ and aquacob(III)alamin (B_{12a}) **but are inert to Co(NH3)5Cl2+ and Co(NH3)5Br2+; reduction of HCrO4** 2 **in 2-ethyl-2-hydroxybutanoate buffers yields the CrIV chelate of the buffering anion.**

Accounts of the generation of gallium(I) species in aqueous solution are exceedingly scarce, $2,3$ and no redox studies of this unusual state appear to have been described. A standard potential for $G_{a}(\text{III},I)$, -0.755 V (25 °C) has been documented.2

The crystalline compound 'gallium dichloride' (Ga_2Cl_4) is known to feature equal numbers of $Ga(I)$ and $Ga(III)$ centers Ga^I $Ga^{III}Cl₄⁻$).⁴ Employing this as a source of hypovalent gallium, we have prepared aqueous Ga(I) solutions which have allowed us, utilizing conventional methods, to compare rates at which this s2-center reacts with a variety of oxidants.

Manipulations of Ga_2Cl_4 (Aldrich) were carried out under high purity N_2 or Ar. Solutions were prepared by dissolving 1.25 g of this halide in 8.0 ml of anhydrous MeCN under a constant flow of protective gas. After 5 min of stirring, a silvercolored precipitate separates. The clear yellow supernatant solution, which was obtained by centrifuging, was found to be 0.20 mol dm⁻³ in Ga^I (spectrophotometric redox titration *vs*. $KI₃$ at 353 nm) and remained unchanged on standing for seven days. Aqueous solutions for kinetic experiments, prepared by 300- to 1000-fold dilutions of the MeCN solutions with O_2 -free water, were stable for 10–15 min in the absence of electrolyte. For slow reactions (*e.g.* reduction of vitamin B_{12a}) fresh aqueous solutions were prepared for each individual run. The rate of the $Ga(I) - I_3$ ⁻ reaction was not appreciably changed by increasing [MeCN] from 0.02 to 0.50 mol dm⁻³, or by adding $GaCl₃$ in concentration three times that of Ga^I .

Solutions of Ga(I) rapidly reduce I_3^- , Br₂(aq), IrCl₆²⁻, HCrO₄⁻, Fe(CN)₆³⁻ and Fe(bipy)₃³⁺. Reduction of B_{12a} [aquacob(III)alamin] is slow, and there is no perceptible reaction with $Co(NH₃)₅Cl²⁺$ or $Co(NH₃)₅Br²⁺$. Each mol of Ga(I) consumes very nearly 1.0 mol of I_3 ⁻ or Br_2 but 2.0 mol of the

Table 1 Reductions with aqueous gallium(I)*a*

Oxidant	Product	k/dm^3 mol ⁻¹ s ⁻¹
I_3 – $Br2$ (aq) $IrCl62-$ $Fe(bipy)_{3}^{3+}$ $HCrO4$ (pH 2.0) B_{12a} (CoIII) $[Co(NH_3), Br]^{2+}$ $[Co(NH_3), Cl]2+$	$I-$ Br^- IrCl ₆ ³⁻ $Fe(bipy)_{3}^{2+}$ C _r III B_{12r} (Co ^{II}) ^b	$(1.47 \pm 0.09) \times 10^4$ $(2.05 \pm 0.05) \times 10^4$ $(7.3 \pm 0.05) \times 10^{2}$ $(8.9 \pm 0.2) \times 10^4$ $(2.7 \pm 0.1) \times 10^3$ $7.1 + 0.3$ < 0.02 < 0.01

a Reactions at 25 °C; $\mu = 0.5$ M (NaClO₄, LiCl or KI); [H⁺] = 0.01–0.05 M; $[Ga^I] = (1.0-12.0) \times 10^{-4}$ M; $[oxidant] = (4.0-12.0) \times 10^{-5}$ M. *b* Spectrum of product corresponded to that reported by Pratt.6

† Electron Transfer, part 145. For part 144, see ref. 1. *Ed.)*, 1993, **59**, 227.

le⁻ oxidants IrCl₆²⁻ and Fe(bipy)₃³⁺, reflecting the expected conversion to Ga^{III} with oxidants of either type [eqn. (1) and (2)]:

$$
GaI + Br2 \rightarrow GaIII + 2Br-
$$
 (1)

 $Ga^I + 2 Fe(bipy)₃³⁺ \rightarrow Ga^{III} + 2 Fe(bipy)₃$ (2)

Oxidation by HCrO₄⁻ utilizes 0.64 ± 0.01 mol of Cr^{VI} in 0.01 M HClO4 but 1.1 mol of oxidant when carried out in 2-ethyl-2-hydroxybutanoic acid buffer (EHBA/EHB⁻, pH 3.3), indicating predominant conversion to CrIII in the absence of this chelating ligand [eqn. (3)] but formation of Cr^{IV} in its presence [eqn. (4)]:

$$
3GaI + 2 CrVI \rightarrow 3 GaIII + 2 CrIII (pH 1–2)
$$
 (3)

$$
GaI + CrVI \xrightarrow[buffer]{} GaIII + CrVI (EHB- complex) \tag{4}
$$

The pink product of eqn. (4) showed a strong peak at 510 nm, typical of EHB-chelated CrIV.5

The reactions listed in Table 1 are first order in each of the redox partners. Although oxidations by $IrCl₆²⁻$ and $Fe(bipy)₃³⁺$ almost certainly pass through the intermediate state Ga^{II}, kinetic profiles for these oxidants exhibit no discontinuity attributable to the accumulation or decay of this odd-electron species, implying a two-step sequence (5), in which

$$
Ga^{I} \xrightarrow[slow]{\text{flow}} Ga^{II} \xrightarrow[rapid]{\text{tr}^{IV}} Ga^{III}
$$
 (5)

the initial step is rate-determining and the more rapid follow-up step is kinetically silent. The relative rates of the two steps suggest that Ga^{II} , the s^1 intermediate, is much more strongly reducing than the parent $s²$ cation, a difference applying also to the related p-block triads, $Tl(m,n,1),$ ⁷ $In(m,n,1)^8$ and $Ge(iv,m,n).⁹$

As has been recently noted¹ for Ge^{II} (an isoelectronic state), Ga^I resists oxidation by both $Co(NH_3)_5Cl^{2+}$ and by its $Co(m)Br$ counterpart. These $Co(m)$ oxidants offer remarkably facile $inner-sphere$ le $-$ paths to aqua complexes of d- and f-block reductants,¹⁰ but such routes are denied to this pair of $4s²$ species which react primarily as $2e^-$ donors. This marked mechanistic shift probably results in part from less effective halo-ligation to this main group center and, in part, from its modestly reducing $E^{\circ}(I,II)$ value (in contrast to the more negative potential for its II–III conversion).

In contrast, we find the cobalt(III) corrin derivative, aqua- cob(m) alamin (B_{12a}) to be reduced smoothly to its Co(II) analog. We suspect that this reaction is initiated by the two-unit reduction (very likely by oxo-transfer) to the known Co^I complex, B_{12s} [cob(I)alamin], a hypovalent species which has been shown¹¹ to undergo very rapid comproportionation with B_{12a} [eqn. (6)]:

$$
\text{Co}^{\text{III}} \xrightarrow{\text{Ga}^{\text{I}}} \text{Co}^{\text{I}} \xrightarrow{\text{Co}^{\text{III}}} 2\text{Co}^{\text{II}} \tag{6}
$$

We are grateful to the National Science Foundation for support of this work and to Ms Arla McPherson and Ms Carol Haven for technical assistance.

Notes and references

1 O. A. Babich and E. S. Gould, *Inorg. Chem.*, 2000, **39**, 4119.

2 L. Ph. Kozin, N. M. Openko and T. A. Tishura, *Ukr. Khim. Zh. (Eng.*

- 3 L. Ph. Kozin, V. N. Statsyuk and A. K. Bogdanova, *Ukr. Khim. Zh. (Russ. Ed.)*, 1985, **51**, 496; *Chem. Abstr.*, 1985, **103**, 94986.
- 4 G. Garton and H. M. Powell, *J. Inorg. Nucl. Chem.*, 1957, **4**, 84.
- 5 M. C. Ghosh and E. S. Gould, *Inorg. Chem.*, 1990, **29**, 4238.
- 6 J. M. Pratt, *Inorganic Chemistry of Vitamin B12*, Academic Press, New York, 1972, p. 104.
- 7 H. A. Schwarz, D. Comstock, J. K. Yandell and R. W. Dodson, *J. Phys. Chem.*, 1974, **78**, 488.
- 8 A. M. Al-Ajlouni and E. S. Gould, *Res. Chem. Intermed.*, 1998, **24**, 653.
- 9 O. A. Babich, M. C. Ghosh and E. S. Gould, *Chem. Commun.*, 2000, 907.
- 10 See, for example: A. G. Lappin, *Redox Mechanisms in Inorganic Chemistry*, Ellis Horwood, New York, 1994, ch. 3.
- 11 D. A. Ryan, J. H. Espenson, D. Meyerstein and W. A. Mulac, *Inorg. Chem.*, 1978, **17**, 3725.